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Session 3: Corrections and Error Sources

* What corrections do we add to our basic range data?

* Where do they come from?

* How do we calibrate and get the most accurate data products?

* What are the error sources to our ranging data?

» Accurate timing: how do we get it? How good is it? Improvements?

» The importance of ground surveys and how do we do them

» Spacecraft centre of mass: modelling considerations and operational issues
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Session 3: Corrections
What do I mean by “corrections” here?

correction (o rekgen)

n
1. the act or process of correcting
2. something offered or substituted for an error; an improvement
3. the act or process of punishing; reproof
4. (Mathematics) a number or quantity added to or subtracted from a scientific or
mathematical calculation or observation to increase its accuracy

“ClTE“ &3 Collins English Dictionary — Complete and Unabridged, 12th Edition 2014 © HarperCallins
Publishers 1991, 1994, 1998, 2000, 2003, 2006, 2007, 2009, 2011, 2014
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Session 3: Corrections
What do I mean by “corrections” here?

correction (o rekgen)

n
1. the act or process of correcting
2. something offered or substituted for an error; an improvement

3. the act or process of punishing; reproof
4. (Mathematics) a number or quantity added to or subtracted from a scientific or

mathematical calculation or observation to increase its accuracy

“ClTE” &3 Collins English Dictionary — Complete and Unabridged, 12th Edition 2014 © HarperCallins
Publishers 1991, 1994, 1998, 2000, 2003, 2006, 2007, 2009, 2011, 2014

The basic corrections we are going to discuss serve the purpose of achieving the required accuracy
from the SLR technique...

They do not imply that the measurements themselves, at a technical level, are inaccurate
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Session 3: Corrections

To recap:

* SLR observations (NPs) —
» Orbit propagation and parameter estimation

The SLR observable is TOF, not distance
Time-of-flight is not what we need in the analysis stage:

We need to convert TOF to ranges, multiplying by the
speed of light + applying some corrections

Photo: M.Wilkinson

However accurate TOF measurements are, without corrections distances are off by metres
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Session 3: Corrections - tropospheric delay

Troposphere: lowest layer of Earth’s atmosphere
Geometric path length != Optical path length
OPL = geometric length x refractive index

Depends on pressure, temperature and composition, which
are heterogeneous and time variable

We compute appropriate corrections using models

Photo: NASA
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Session 3: Corrections - tropospheric delay

Normally the total delay at the zenith is computed,

followed by a projection to the angle of interest [REbisseen e 0
-~ mean
Currently we use the Mendes-Pavlis model (2004) S
* Zenith delay accuracy: sub-mm 515
* Mapping function: sub-cm g 10
:
Developed from ray-tracing computations, using satellite 2
observations of the atmosphere 0
90 75 60 45 30 15

elevation (deg)
Assumption: spherically symmetric atmosphere
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Normally the total delay at the zenith is computed,

_— : i heric delay (532
followed by a projection to the angle of interest oResRiic e
e nearn
20
Currently we use the Mendes-Pavlis model (2004) S
« Zenith delay accuracy: sub-mm = 12.8 m @10 deg
» Mapping function: sub-cm 910
g 6.7 m @20 deg
o
Developed from ray-tracing computations, using satellite 2
observations of the atmosphere 0
90 75 60 45 30 15

elevation (deg)
Assumption: spherically symmetric atmosphere
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Session 3: Corrections - tropospheric delay

Test: orbit fit without applying any corrections
« Data: LAGEOS & LAGEOS-2 normal points from the global network (7 days)
* Only dynamic parameters estimated (satellite positions, force model)

» Quantity of interest: observed minus computed residuals
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Session 3: Corrections - tropospheric delay

Test: orbit fit without applying any corrections

No corrections
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» Very poor orbital fit (no better than several metres)
» Evident systematic signatures in histogram of residuals
» Possibly only good for orbit predictions, if at all
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Session 3: Corrections - tropospheric delay

Test: mean atmospheric delay

+ atmospheric delay: average

1000
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.
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g
—-500
58314 58315 58316 58317 58318 58319 58320 58321 0 1000
epoch (M)D) res (cm)

» Massive improvement in orbit fit (one order of magnitude)
* No meteorological data employed, simple average delay applied
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Session 3: Corrections - tropospheric delay

Test: mean atmospheric delay

+ atmospheric delay: average
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» Massive improvement in orbit fit (one order of magnitude)

* No meteorological data employed, simple average delay applied

« But clearly not good enough: RMS = 22.0 cm; mean residual offset =-16.5 cm
 Distribution of residuals evidently non-Gaussian
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Session 3: Corrections - tropospheric delay

Tropospheric delay (532 nm)
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Session 3: Corrections - tropospheric delay

Tropospheric delay (532 nm)
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Model used to compute delay values
Variables: P, T, RH, elev., wavelength, latitude, height

© NERC All rights reserved




Session 3: Corrections - tropospheric delay

Tropospheric delay (532 nm)
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Model used to compute delay values
Variables: P, T, RH, elev., wavelength, latitude, height
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Session 3: Corrections - tropospheric delay

Test: full model atmospheric delay

+ atmospheric delay: average
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Session 3: Corrections - tropospheric delay

Test: full model atmospheric delay

+ atmospheric delay: per observation & met data
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* Much better fit and distribution of residuals
e RMS =11.0 cm; residuals mean offset =-15.7 cm
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Session 3: Corrections - tropospheric delay

A curiosity?

» Tropospheric delay model contains a corrective factor
dependent on the concentration of atmospheric CO,

* Recommended value: 375 ppm

* Very small correction, will it ever matter?
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Session 3: Corrections - tropospheric delay

A curiosity?

» Tropospheric delay model contains a corrective factor
dependent on the concentration of atmospheric CO,

* Recommended value: 375 ppm
* Very small correction, will it ever matter?

CO2 concentration in 1976 : 330 ppm
2019:410 ppm

Total zenith delay @330 ppm : 2.447487 m
Total zenith delay @410 ppm : 2.447592 m

© NERC All rights reserved
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Session 3: Corrections - tropospheric delay

A CU riOSity? ZZZ a Atmospheric CO, concentration i b Global mean surface air temperature
» Tropospheric delay model contains a corrective factor ml= T %J Brecciiie
dependent on the concentration of atmospheric CO,
* Recommended value: 375 ppm B
% jzz ¢ Atmospheric CO, concentration E:’. g| d Global mean surface air temperature
 Very small correction, will it ever matter? IR presmmmon E
« Delay @330@10 deg : 13.5812 m Y TR RS -

20
1850 1900 1950 2000 2050 2100 1850 1900 1950 2000 2050 2100

* Delay @410@10 deg: 13.5818 m (+ 0.6 mm)
Figure 12.36 | S'\mul\ated changes '\n. (al)atmospher'\(.CO2 concentration and (b) g\aba\. averaged surface Iemper.arure (f’C) as fa\(u\ared bythe CMIPS Earth System Models (lESMs)
° D e I ay @ 5 50@ ’l 0 d eg : 1 3 . 5828 m (+ 1 . 6 m m ) for the RCP8.5 scenario when €O, emissions are prescribed to the ESMs as external forcing (blue). Also shown (b, in red) is the simulated warming from the same ESMs when directly

forced by atmospheric CO, concentration (a, red white line). Panels (c) and (d) show the range of CO, concentrations and global average surface temperature change simulated by
the Model for the Assessment of Greenhouse Gas-Induced Climate Change 6 (MAGICCG6) simple climate model when emulating the CMIP3 models climate sensitivity range and the
Coupled Climate Carbon Cycle Model Intercomparison Project (C*MIP) models carbon cycle feedbacks. The default line in (c) is identical to the one in (a).

IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University P
Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
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Session 3: Corrections - centre of mass

Absolute Scalar Magnetometer

Deployable boom

Startracker assembly
Optical bench

Vector Field Magnetometer

Solar panels GPS antennas

Laser retroreflector
Accelerometer (inside)

Coarse Earth & Sun sensor

5-Band antenna

5-Band antenna

Side view of
instrumentation
on the Swarm
satellites

Image: ESA




Session 3: Corrections - centre of mass

Absolute Scalar Magnetometer Deployable boom Solar panels GPS antennas 5-Band antenna

Side view of
instrumentation
on the Swarm
satellites

Startracker assembly Laser retroreflector

Optical bench Accelerometer (inside)

Vector Field Magnetometer Coarse Earth & Sun sensor S-Band antenna Image: ESA

Time of flight measurements are made to the internal surfaces of the cube corner retroreflectors
We want the distance to the centre of mass of the orbiting object
We need information relating the position of the retroreflector array to the centre of mass

Retroreflector array information and its location on the satellite must be provided by missions
when requesting laser tracking to the ILRS

© NERC All rights reserved




Session 3: Corrections - centre of mass

International Laser Ranging Service
ofthe International A tion of

Network Missions Science Data & Products Technology

4 R
Missions Home » Missions » Satellite Missions » Current Missions

List of Missions General ILRS Mission Support Retroreflector Info Array Offset Station Data Info

LI CryoSat: Reflector Information

Future
RetroReflector Array (RRA) Characteristics:

Past/Other

Spacecraft Parameters ‘.“J ‘\

Mission Support ﬂ

7
.g‘-

Mission Operations \

Missions Standing
Committee Courtesy of ESA

The Cryosat-1 and -2 retroreflector arrays hae seven corner cubes and is based on METEOR array design.

Quick Links

'T'T Fiight direction
» List of Missions

» List of Satellite Names

» Mission News

» Mission Campaigns

» Mission Support Request

> Predictions

» Priorities

Cross section of Cryosat retroreflector array Top view of Cryosat retroreflector array
Related Publications:

Reflected wavefront measurement of Crvosat LRR module
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Session 3: Corrections - centre of mass

R e 1 _
ofthe International A
1A

About ILRS Network Missions Science Data & Products Technology

VY e o il
[ Mfssfons Home » Missions »" Satellite Missions » Current Missions

List of Missions General L s - mr——— Array Offset Station Data Info

S COMPASS/BeiDou: Array Offset Information

Future
Center of Mass Information:

COMPASS-M1 | COMPASS-M3 | COMPASS-G1 | COMPASS-I3 | COMPASS-IS

Satellite CoM relative to satellite- (1082.0,-0.4, (1082.0, -0.4, (1152.5, 02, (1075.6, 0.0, (1075.6, 0.0,
ST T based origin: -0.5)mm -0.5)mm 0.0)ymm -0.4)ymm -0.4)ymm
Mission Support Location of phase center of the LRA | (649.9, -562.5, (649.9, -562.5, (6088, -570.2, | (673 -573, (673, -573,

relative to a satellite-based origin: 1112.3) mm 1112.3) mm 1093) mm 1093)mm 1093)mm
Position and orientation of the LRA (649.9, -062.5, (649.9, -562.5, (608.8, -570.2, (673, -573, (673, -573,
Missions Standing reference point relative to a satellite- 1133.3)mm 1133.3) mm 1114) mm 1114) mm 1114) mm

Committee based origin:

Mission Operations

Quick Links

¢ List of Missions

» List of Satellite Names

> Mission News

> Mission Campaigns

> Mission Support Request
¢+ Predictions

» Pricrities
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Session 3: Corrections - centre of mass

G IRNSS LRA diagram (ISRO)

EAST (S/C) ,.
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5 Z B . . 11165 8
2 1372 Z e c e

H

EV (S/C),[View from TOP]

N (s 0,0,0)

WEST (S/C)

https://ilrs.cddis.eosdis.nasa.gov/missions/satellite_missions/current_missions/irnb_com.html
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Session 3: Corrections - centre of mass

Test: geometric centre of mass from engineering drawings

+ atmospheric delay: per observation & met data

60
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res (cm)
{as)

-20

-40

58314 58315 58316 58317 58318 58319 58320 58321 0 100
epoch (M)D) res (cm)
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Session 3: Corrections - centre of mass

Test: geometric centre of mass from engineering drawings

+ Centre of Mass correction (engineering value)

60
40
=20
5 £
= 0 sl ln"’:-"”‘ V“"‘;‘VH 'ﬂ?;l} 4\1?'{1‘##&;,‘;»., r; e
E—20 .l. % 3 ¢ "' ‘!-z"l"!'lf1",; Jie ot
i b SRR AEER L LA RS LR S
—-40 B - :’:‘ - E Al L RO ,
N A
58314 58315 58316 58317 58318 58319 58320 58321 0 100
epoch (M)D) res (cm)

* Order of magnitude improvement
e RMS =1.87 cm; mean of residuals =9.97 mm
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Test: geometric centre of mass from engineering drawings

+ Centre of Mass correction (engineering value)

20
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. . :
o 5 b i g Rae Lt Bty Tl g b .
E &a 1 ;: 1 £ e R ?‘ "lé.*.:l! }; r.i' i‘;'.; { ‘{‘ i 1 A ,,[! : " ’ .;. f,
< o0 h ?? (e ”{ ‘_f?;ﬂ-il ;'2; g’f;?? ;’%‘%\l 3. ) !;%*.5;. ."{ﬁ;-s e
4 Pl i S Ei e el 1 : % R
; H % i § ; | b ;
~ _5 : 3 = : g .S i
-10 i
[ ’
=20 _ il

58314 58315 58316 58317 58318 58319 58320 58321 -20 0 20
epoch (M)D) res (cm)

* Order of magnitude improvement
* RMS = 1.87 cm; mean of residuals = 9.97 mm
* Good residuals distribution (just slightly skewed)
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Session 3: Corrections - centre of mass (to be continued)

Test: geometric centre of mass from engineering drawings

+ Centre of Mass correction (engineering value)

u‘ 'r: :i, : o5 "'i': f,'
5;%4"2;;i‘?t??’,&wﬂ‘iw“. ?‘..s .%‘:' %

i1

res (cm)
{as)
et
-ﬂ-..

1 .; . L ¢ ‘: { : . : ]
i | po A
58314 58315 58316 58317 58318 58319 58320 58321 -20 0 20
epoch (M)D) res (cm)

* Order of magnitude improvement
* RMS = 1.87 cm; mean of residuals = 9.97 mm
* Good residuals distribution (just slightly skewed)
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Session 3: Corrections - Shapiro delay

Relativistic time delay

» Electromagnetic waves propagate slower in the presence of
a strong gravitational field

» Irwin Shapiro noted in 1964 that measuring this delay was
technically feasible (expected ~200 us to/from Mercury)

» Experiment successfully performed in 1967 of the round-
trip delay between Earth - Mercury and Earth - Venus

» Refinements would follow repeating the experiment with
the Viking Landers and Orbiters
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Session 3: Corrections - Shapiro delay

In near Earth environment small effect neglected for low

accuracy applications

12 Shapiro time delay (LAGEOS)

Depends on the relative positions of the ground stations
and the satellites

* 6-9mm for LAGEOS
e 13-19 mm for GNSS

correction (mm)
[e)]

H i 90 75 60 45 30 15
With accuracy goals of 1 mm, geodetic analyses must satellite elevation [deg]
include this relativistic effect
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Session 3: Corrections - Shapiro delay

Test: relativistic Shapiro time delay

+ Centre of Mass correction (engineering value)
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Session 3: Corrections - Shapiro delay

Test: relativistic Shapiro time delay

+ Relativistic time delay

20
15
L : ; n
£ ° BN ;"‘ "',‘L g
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S § 3 ; it b !
L 3 ¥ : ; '

-15 - ! 3 ! .
250 : : W o

58314 58315 58316 58317 58318 58319 58320 58321 -20 0 20
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 Orbital fit improvement; modest RMS gains, 50% reduction of residual offset
* RMS =1.68 cm; mean of residuals = 5.38 mm
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Session 3: Corrections - centre of mass II

So far we only considered a naive approach to correct for the offset between CoM and reflection point
In the early 1990s it became clear that SLR data from different satellites presented different signatures

Moreover, the specific shape of these signatures depended on the detection equipment in use, as well
as on the way they were operated

The use of a single CoM value for each satellite applicable to all stations was no longer considered valid

Ground tests in the laboratory are of limited use to solve this problem




Question: Why don't you just read the technical drawings?

— 257.6 mm -,
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Question: Why don't you just read the technical drawings?

LAGEQOS

© NERC Al rights reserved



Question: Why don't you just read the technical drawings?
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Question: Why don’t you just read the technical drawings?

Answer: Target signature effects

Distance to sat centre

Time of flight

© NERC Al rights reserved
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Session 3: Corrections - centre of mass II

Detailed modelling to compute CoM offsets for specific system specifications and mode of
operation were developed by Otsubo & Appleby (2003), later applied to several satellites

Recently we have revisited this model, improved some aspects of it, developed it further, and
applied it to compute new CoM offsets for six “cannonball” satellites (Rodriguez, Otsubo, Appleby
2019)

The most significant novelties include a new modelling approach for certain kinds of stations and
the use of more detailed hardware specifications, operational and processing details




Session 3: Corrections - centre of mass II

How do we compute CoM offsets?
1. Characterisation of satellite optical response
2. Computation of CoM values

a. Single-photon, single-stop stations
b. Multi-photon stations

Single-photon operation: intensity of detected laser pulses is limited,
statistically only one photon reaches the detector

Achieved by limiting detection rate below ~10%, so that probability of multi-
photon events is very low (Poisson statistics)

© NERC All rights reserved



Session 3: Corrections - centre of mass II

Characterisation of target optical response

Function of: physical characteristics of retroreflectors
geometry of arrays
laser wavelength
target orientation

Physical data — ray tracing individual retro — average over array — empirical fit to single-photon data

Reflectivity map Response at arbitrary orientations Average over 250K orientations

0=338" ¢=119 0=138" ¢=95 0=347" ¢=128

B = ul\l\ sl

0=151° ¢=24 0=349" $=53 0=58° ¢=40

i T L‘ |
R(em)

L. Hm\"” Mm' e “1” mH % 18 2 2 %
16 18 ZﬂR( 2 24 % 16 18 ZU ?2 24 % 16 18 20 ‘ 22 % % R(CI’T‘I)
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Session 3: Corrections - centre of mass II

Taking into account specifics of hardware/operation, use optical responses to compute CoM

a. Single photon systems
Simple mathematical relation between optical response and probability distribution of detections (Neubert 1994)

a. Multiple photon systems
More complex detection process and some practical operational pitfalls

We have modelled systems of both kinds with reasonable success

© NERC All rights reserved



Session 3: Corrections - centre of mass II

Exploratory sensitivity analysis: play with the model to get a feeling of the inputs/outputs

Total range: (mm)

STA1 2.3 7.2 2.4 3.5 35.2
STA2 3.0 5.0 1.5 1.6 9.0
STA3 1.4 4.8 1.0 1.5 4.0

Max error pessimistic case: 1-3 mm small targets and LAGEOS
5-10 mm Etalon
10-30 mm Ajisai

Agreement between predicted and empirical data indicates situation is better than this

None of this informs us about whether models are fundamentally flawed somewhere
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Session 3: Corrections - centre of mass II

Test: detailed CoM (satellite, system, and operation specific)

+ Relativistic time delay
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Session 3: Corrections - centre of mass II

Test: detailed CoM (satellite, system, and operation specific)

+ Centre of Mass: per station/satellite
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 Orbital fit improvement; modest RMS gains, 50% reduction of residual offset
* RMS =1.51 cm; mean of residuals =-2.27 mm
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Session 3: Corrections - centre of mass II

Post-fit residual RMS Post-fit mean residual (absolute)
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Session 3: Corrections and Error Sources

Summary

« SLR measures round trip time of flight between stations and optical reflection points of
retroreflector arrays in orbit, using light pulses that propagate through the atmosphere in the
near Earth environment

» Thus, we need to apply corrections to accurately derive distances from the measured TOF

» Tropospheric delays, centre of mass offsets, and relativistic delays are essential corrections
applied to SLR data to achieve mm-level accuracies

» CoM offsets are system-specific, and dependent on how they operate — ideally stations should
acquire data in a consistent way
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